Strain Effects in Narrow-Bandwidth Manganites: The Case of Epitaxial Eu$_{0.7}$Sr$_{0.3}$MnO$_3$ Thin Films

Eun Ju Moon,1,* David J. Keavney,2 and Steven J. May1,†

1Department of Materials Science & Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA
2Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA

(Received 27 February 2014; revised manuscript received 23 May 2014; published 26 June 2014)

We have investigated the strain-dependent magnetic properties of epitaxial narrow-bandwidth manganite, Eu$_{0.7}$Sr$_{0.3}$MnO$_3$ (ESMO), thin films on various substrates traversing from compressive (~2.4%) to tensile (+1.5%) strain. The stoichiometry and crystalline quality of the films were confirmed with diffraction and spectroscopic-based characterization. Using field- and temperature-dependent magnetometry, we find that the epitaxial strain acts to suppress the ferromagnetic state, although films under compressive strain retain a greater propensity for ferromagnetic behavior. However, temperature-dependent resistivity reveals that ESMO thin films exhibit a ferromagnetic insulating state in contrast to wide-bandwidth La$_{0.7}$Sr$_{0.3}$MnO$_3$ films under a comparable strain. The combination of a highly strain-dependent ferromagnetic state and robust insulating behavior may offer novel applications in spin filtering, sensing, or electronics.

DOI: 10.1103/PhysRevApplied.1.054006

I. INTRODUCTION

Manganese-based perovskite oxides, A$_{1-x}$A$'$,MnO$_3$ (A = La, Pr, Nd, Sm, Eu, A' = Ca, Sr, Ba), are actively synthesized and investigated in order to understand their structural behavior, magnetic properties, and charge or orbital ordering which are often coupled, leading to complex physical properties [1–4]. Depending on the A-site composition, the manganites can exhibit double-exchange or superexchange interactions between adjacent Mn$^{3+}$ and Mn$^{4+}$ cations, leading to a variety of magnetic states including nearly half-metallic ferromagnetism, multiple antiferromagnetic spin structures, spin-glass behavior, and canted antiferromagnetism [5–9]. This array of magnetic functionalities has generated considerable interest for applications in spintronics, electronics, and sensing [10–14].

A critical parameter in determining magnetic coupling is the Mn e_g electronic bandwidth, which is coupled to lattice distortions that arise due to deviations from the ideal perovskite structure, most critically distortions and rotations of the MnO$_6$ octahedra [15–19]. In narrow-bandwidth manganites such as Pr$_{1-x}$Ca$_x$MnO$_3$ [20,21], Sm$_{1-x}$Sr$_x$MnO$_3$ [22], and Nd$_{1-x}$Sr$_x$MnO$_3$ [23], competing magnetic and electronic phases often reside in close energetic proximity. In such cases, the dominant magnetic and electronic phase can become unstable under the application of a variety of external stimuli, including magnetic, electrical, pressure, and light [24–28]. This functional response points to several possible applications in electronic devices and sensors.

Eu$_{1-x}$Sr$_x$MnO$_3$ exhibits a strongly distorted orthorhombic structure due to the relatively small size of the Eu ion (i.e., a reduced tolerance factor compared to La$_{0.7}$Sr$_{0.3}$MnO$_3$). Previous studies of bulk Eu$_{1-x}$Sr$_x$MnO$_3$ have revealed rich magnetic behavior, in which the stability of the magnetic order is extremely sensitive to external magnetic fields and the cation composition (x) [29–33]. The Eu$_{0.7}$Sr$_{0.3}$MnO$_3$ composition is of particular interest compared to other narrow-bandwidth $A_{0.7}$Sr$_{0.3}$MnO$_3$ compounds, as bulk Sm$_{0.7}$Sr$_{0.3}$MnO$_3$ is ferromagnetic while Gd$_{0.7}$Sr$_{0.3}$MnO$_3$ is antiferromagnetic [21,34]. Therefore, Eu$_{0.7}$Sr$_{0.3}$MnO$_3$ resides near a ferromagnetic or antiferromagnetic phase boundary, the stability of which is determined by structural distortions, making it an excellent candidate for investigating the use of epitaxial strain to alter magnetically ordered phases.

Despite this, the magnetic and electronic behavior of epitaxially strained Eu$_{0.7}$Sr$_{0.3}$MnO$_3$ thin films has yet to be reported even though epitaxial thin films can present quite different properties from those of isocompositional bulk materials, as strain, interfacial structural coupling, and reduced dimensionality can significantly alter behavior in complex oxides [35–43]. Here, we show that the behavior of the narrow-bandwidth manganite, Eu$_{0.7}$Sr$_{0.3}$MnO$_3$ (ESMO), exhibits an enhanced sensitivity to strain compared to the well-studied La$_{0.7}$Sr$_{0.3}$MnO$_3$ (LSMO) system. In particular, we find that a moderate tensile strain (1.5%) suppresses the ferromagnetic ground state. In an additional difference to wide-bandwidth manganite films, ESMO films retain insulating behavior.

*em582@drexel.edu
†smay@coe.drexel.edu
independent of the strain state. Thus, films grown on relatively lattice-matched substrates are ferromagnetic and insulating, an uncommon combination of properties that may be useful for devices or sensors.

II. EXPERIMENTAL METHODS

ESMO thin films are grown with oxide molecule beam epitaxy by an interrupted epitaxial growth mode on SrTiO$_3$ (STO, lattice mismatch $\epsilon \sim 1.52\%$), (LaAlO$_3$)$_{0.3}$(Sr$_2$AlTaO$_6$)$_{0.7}$ (LSAT, approximately 0.58%), LaAlO$_3$ (LAO, approximately -1.47%), and SrLaAlO$_4$ (SLAO, approximately -2.39%) substrates. During deposition, the substrate temperature is held at approximately 620°C, and the ozone-to-oxygen mixture (approximately 5:95%) is sourced to the substrate at a rate that yields a chamber pressure of approximately 8×10^{-6} Torr. Growth is monitored by in situ reflection high-energy electron diffraction (RHEED). The atomic fluxes for the cation deposition are calibrated using Rutherford backscattering spectroscopy (RBS) and x-ray reflectivity (XRR). Film thickness and smooth surface morphology are confirmed by XRR. The thickness of all ESMO films in this study is 40 unit cells (u.c.). XRD measurements are taken around the (0 0 2) (pseudocubic notation) truncation rod of the film with a Rigaku Smartlab diffractometer, equipped with a parabolic mirror and a two-bounce monochromator on the incident beam. The same instrument is used to measure a reciprocal space map (RSM) around the (1 0 3) truncation rod. Resonant soft x-ray spectroscopy was performed at the beam line 4-ID-C of the Advanced Photon Source at Argonne National Laboratory in total electron yield mode to probe the Eu M_5 and Mn $L_2,3$ edges at 300 K. Magnetic properties are measured in a Quantum Design physical-property measurement system (PPMS) with vibrating sample magnetometry.

III. RESULTS AND DISCUSSION

Figure 1(a) shows a RHEED image of a 40-u.c.-thick ESMO film on STO. Well-defined streaks appear at the (0 1), (0 0), and (0 $\bar{1}$) reflections confirming the smooth surface of the epitaxial ESMO thin film. The corresponding XRR data are shown in Fig. 1(b). The XRR data are fit with the genx program; the data fit well to a model with a uniform scattering length density throughout the film and an abrupt film-substrate interface. Figure 1(c) shows XRD measurements taken around the (0 0 2) truncation rod of the ESMO films grown on various substrates. The film peaks exhibit noticeable shifts from the bulk ESMO lattice constant ($a_{\text{pseudocubic}} \sim 3.846$ Å, in bulk) [29]. The out-of lattice parameters of the films are displayed in Fig. 1(d), obtained from Fig. 1(c). Based on the positions of the ESMO (0 0 2) and the substrate of STO, LSAT, and LAO (0 0 2) and SLAO (0 0 6) reflections, the pseudocubic lattice parameters of the ESMO thin films are shifted in response to the various strain states. To confirm the coherent strain state of ESMO, a reciprocal space map (RSM) around the (1 0 3) Bragg peak for the ESMO film on STO and LAO is shown in Fig. 1(e). The red horizontal line indicates the in-plane (Q_x) position of the ESMO film and STO, which exhibit the same in-plane lattice constant, confirming that the film is coherently strained.

To further examine the stoichiometry of the films, we used RBS to confirm the cation composition and x-ray absorption spectroscopy (XAS) to investigate the Eu and Mn valence states. Figure 2(a) displays the RBS spectrum measured from the film grown on STO and a simulated spectrum for the Eu$^{0.7}$Sr$^{0.3}$MnO$_3$ composition. Good agreement between the data and simulation indicates that the film has the target stoichiometry. Figure 2(b) shows the Eu
M_5-edge XAS spectrum measured from a ESMO film on LSAT. It is clearly shown that the Eu M_5-edge spectrum of the ESMO thin film is in good agreement with that of Eu$^{3+}$, as previously reported for Eu$^{2+}$O$_3$ (a dashed curve) [44].

Figure 2(c) shows the Mn $L_{2,3}$ edge XAS spectra probing the unoccupied Mn 3d states via the $2p$-$3d$ dipole transition for the four different strained ESMO thin films. The spectra from the ESMO thin films display the same qualitative characteristics, confirming the same nominal Mn valence state in all of the films. Additionally, the L_3 peak position is consistent with previous reports of $A_{0.7}A_0'$$_{0.3}MnO_3$ samples [45,46], providing additional validation of the $x = 0.3$ stoichiometry.

The temperature-dependent field-cooled (FC) and zero-field-cooled (ZFC) magnetizations measured in a magnetic field of 0.05 T applied parallel to the film are shown in Fig. 3(a). The Curie temperatures, T_C, are approximately 90 K for ESMO/LSAT, 80 K for ESMO/LAO (under 0.15 T and 70 K under 0.05 T), and 60 K for ESMO/SLAO. Note that the T_C of bulk ESMO is approximately 65 K when measured at low fields; however, magnetization can persist to temperatures above 100 K in fields greater than 1 T [29,30]. Interestingly, the ferromagnetic state of the film on STO is suppressed, leading to a negligible magnetization as a function of temperature. We attribute this evolution in T_C to the biaxial epitaxial strains. As shown in Fig. 3(a), a large irreversibility between ZFC and FC magnetizations is observed for compressive strained ESMO on LAO and SLAO. During the FC process, the ESMO/LAO magnetization increases rapidly below T_C, behavior that we also find in ESMO/SLAO and ESMO/LSAT. Additionally, the
FC behavior is qualitatively the same for bulk ESMO and these films [29,32].

We measure magnetic hysteresis loops ($M-H$) at 5 K, as shown in Fig 3(b). The film grown on STO exhibits negligible magnetization. In contrast, the film on LSAT exhibits a hysteresis loop consistent with typical ferromagnetic behavior in manganites and a saturation magnetization of approximately 3.3 μ_B/Mn similar to that of bulk ESMO [30]. In the films under compressive strain, the magnetization continuously increases with the applied field with the presence of a clear remnant magnetization, indicative of a ferromagnetic state, with saturation magnetizations of approximately 1.8 and approximately 2.1 μ_B/Mn for SLAO and LAO, respectively.

In order to confirm the abrupt suppression of magnetization between ESMO films on LSAT and on STO, shown in Figs. 3(a)–3(b), we perform an element-selective XMCD, in which the differences in the absorption of right and left circularly polarized x rays are measured at the Mn L edge. Figure 3(c) shows the Mn 2p (\rightarrow 3d) XMCD spectra of ESMO grown on the two substrates measured at 10 K under 300 Oe. The film grown on STO exhibits negligible dichroism signal. In contrast, ESMO on LSAT exhibits a clear XMCD signal. This result is consistent with the magnetization data in Fig. 3(a) showing the negligible magnetization from the ESMO on STO and the typical ferromagnetic behavior in manganites from the film on LSAT. This result is quite different from the behavior observed in LSMO, which remains ferromagnetic (albeit with a reduced T_C) even in the presence of over 3% tensile strain [35,47].

The inset to Fig. 3(c) shows the trend of saturation magnetization (M_s) as a function of lattice mismatch between the films and substrates. The thin film on LSAT, the least strained of the films, exhibits the highest M_s, which becomes suppressed as ESMO films are subjected to increasing strain (either compressive or tensile). This indicates that the presence of the lattice mismatch provides a means to tune the magnetization and the magnetic ordering transition temperature. As shown in the inset of Fig. 3(c), the magnetic properties can be altered from weakly ferromagnetic, ferromagnetic, and paramagnetic with widely varying ordering temperatures through biaxial strain, which alters the MnO$_6$ rotations and distortions.

We next turn to the electronic transport as the magnetic and electronic properties are strongly coupled in mixed-valence manganites. Figure 4(a) shows the temperature dependence of the resistivity, $\rho(T)$, of the ESMO films (40 u.c. thick) grown on four different substrates and LSMO films (20 u.c. on LSAT and 80 u.c. on STO) on both STO (red solid line) and LSAT substrates. Four ESMO films exhibit insulating behavior with little difference between the ferromagnetic film on LSAT, weak ferromagnetic film on LAO and SLAO, and the paramagnetic film on STO. Below approximately 120 K the films become too insulating for our measurement capabilities. The resistivity exhibits simple Arrhenius behavior, following $\rho = \rho_0 e^{-E_A/k_B T}$, with an activation energy (E_A) of 150 meV. The electrical behavior of the films is in agreement with previous reports from bulk ESMO, except we note that below T_C a decrease in resistivity is observed in bulk [29,48]. However, the value of resistivity reported in the ferromagnetic state remains above 10^4 Ω cm, which is the upper limit of our measurement capabilities for films of this thickness. The insulating behavior in the ESMO films stands in contrast to LSMO grown on STO, which is under approximately the same magnitude of tensile strain as ESMO on LSAT. The LSMO/STO film shows typical metallic behavior associated with double-exchange ferromagnetism including an inflection in the resistivity near T_C.

The magnetoresistance (MR) of the ESMO films, shown in Fig. 4(b), exhibits strain-dependent trends similar to the magnetization. The MR data are obtained in a field of 7 T applied perpendicular to the plane of the film. Interestingly, the film on LSAT shows higher MR than the rest and that on LAO, SLAO, and STO, in order. This MR behavior is
consistent with magnetization data in that the ferromagnetic samples tend to have the largest MR.

Finally, we comment on potential applications enabled by the novel combination of magnetic properties that are strongly dependent on epitaxial strain and insulating behavior observed in the ESMO films. This high sensitivity to lattice strain and robust insulating behavior distinguishes the narrow-bandwidth ESMO films from their wide-bandwidth LSMO counterparts, and may lead to unique applications in spintronics or sensing. Ferromagnetic insulators are the enabling material component for tunneling spin filters [49]; for instance, thin ferromagnetic \(\text{Sm}_{0.75}\text{Sr}_{0.25}\text{MnO}_3 \) layers have recently been utilized as spin-filtering tunnel barriers [50]. The use of ESMO as tunnel barriers could enable strain-dependent spin filtering in which the ability to tune the magnetic state of an insulating barrier via piezoelectric strain modification [51] would offer voltage-tunable spin injection. Additionally, strain-based control of magnetism in ESMO using piezoelectric substrates may lead to tunable microwave components such as filters or resonators [52,53].

ACKNOWLEDGMENTS

We thank Leszek Wielunski and Boris Yakshinskiy for RBS measurements at the Laboratory for Surface Modification at Rutgers University and Yujun Xie for ESMO resistivity measurements. This work is supported by the U.S. Army Research Office under Grant No. W911NF-12-1-0132. Acquisition of the PPMS is supported by the U.S. Army Research Office under Grant No. W911NF-11-1-0283. Use of the Advanced Photon Source, an Office of Science User Facility operated by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357.

[33] G. J. Liu, J. R. Sun, C. M. Xiong, D. J. Wang, Y. W. Xie, H. W. Zhang, T. Y. Zhao, and B. G. Shen, Heat capacity at the field-induced ferromagnetic transition in Eu$_{0.58}$Sr$_{0.42}$MnO$_3$, Appl. Phys. Lett. 87, 182502 (2005).

[36] Y. Takamura, R. V. Chopdekar, E. Arenholz, and Y. Suzuki, Control of the magnetic and magnetotransport properties of La$_{0.57}$Sr$_{0.43}$MnO$_3$ thin films through epitaxial strain, Appl. Phys. Lett. 92, 162504 (2008).

[40] W. Prellier, M. Rajeswari, T. Venkatesan, and R. Greene, Effects of annealing and strain on La$_{0.57}$Ca$_{0.43}$MnO$_3$ thin films: A phase diagram in the ferromagnetic region, Appl. Phys. Lett. 75, 1446 (1999).

